Variation among S-locus haplotypes and among stylar RNases in almond

Author:

Goonetilleke Shashi N.ORCID,Croxford Adam E.,March Timothy J.ORCID,Wirthensohn Michelle G.ORCID,Hrmova MariaORCID,Mather Diane E.ORCID

Abstract

AbstractIn many plant species, self-incompatibility systems limit self-pollination and mating among relatives. This helps maintain genetic diversity in natural populations but imposes constraints in agriculture and plant breeding. In almond [Prunus dulcis (Mill.) D.A. Webb], the specificity of self-incompatibility is mainly determined by stylar ribonuclease (S-RNase) and S-haplotype-specific F-box (SFB) proteins, both encoded within a complex locus, S. Prior to this research, a nearly complete sequence was available for one S-locus haplotype. Here, we report complete sequences for four haplotypes and partial sequences for 11 haplotypes. Haplotypes vary in sequences of genes (particularly S-RNase and SFB), distances between genes and numbers and positions of long terminal repeat transposons. Haplotype variation outside of the S-RNase and SFB genes may help maintain functionally important associations between S-RNase and SFB alleles. Fluorescence-based assays were developed to distinguish among some S-RNase alleles. With three-dimensional modelling of five S-RNase proteins, conserved active sites were identified and variation was observed in electrostatic potential and in the numbers, characteristics and positions of secondary structural elements, loop anchoring points and glycosylation sites. A hypervariable region on the protein surface and differences in the number, location and types of glycosylation sites may contribute to determining S-RNase specificity.

Funder

Horticulture Australia

Department of Education and Training | Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3