Author:
Xiling Guo,Yin Chen,Ling Wang,Xiaosong Wu,Jingjing Fan,Fang Li,Xiaoyan Zeng,Yiyue Ge,Ying Chi,Lunbiao Cui,Liubo Zhang,Hong Sun,Yan Xu
Abstract
AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is currently a global pandemic, and there are limited laboratory studies targeting pathogen resistance. This study aimed to investigate the effect of selected disinfection products and methods on the inactivation of SARS-CoV-2 in the laboratory. We used quantitative suspension testing to evaluate the effectiveness of the disinfectant/method. Available chlorine of 250 mg/L, 500 mg/L, and 1000 mg/L required 20 min, 5 min, and 0.5 min to inactivate SARS-CoV-2, respectively. A 600-fold dilution of 17% concentration of di-N-decyl dimethyl ammonium bromide (283 mg/L) and the same concentration of di-N-decyl dimethyl ammonium chloride required only 0.5 min to inactivate the virus efficiently. At 30% concentration for 1 min and 40% and above for 0.5 min, ethanol could efficiently inactivate SARS-CoV-2. Heat takes approximately 30 min at 56 °C, 10 min above 70 °C, or 5 min above 90 °C to inactivate the virus. The chlorinated disinfectants, Di-N-decyl dimethyl ammonium bromide/chloride, ethanol, and heat could effectively inactivate SARS-CoV-2 in the laboratory test. The response of SARS-CoV-2 to disinfectants is very similar to that of SARS-CoV.
Funder
National Major Science and Technology Projects of China
National Natural Science Foundation of China
Jiangsu Social Development Project
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Gorbalenya, A. E. et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).
2. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J. & Hsueh, P. R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55, 105924 (2020).
3. WHO. Coronavirus Disease (COVID-19) Outbreak Situation. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2020).
4. Wu, A. et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27, 325–328 (2020).
5. Health Committee of the People's Republic of China. Novel Coronavirus Pneumonia Treatment Programme (seventh edition) (2020).
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献