Arrangement optimization of water-driven triboelectric nanogenerators considering capillary phenomenon between hydrophobic surfaces

Author:

Park Hong Ryul,Lee Jeong-Won,Kim Dong Sung,Sim Jae-Yoon,Song Insang,Hwang Woonbong

Abstract

AbstractThe rise in environmental issues has stimulated research on alternative energy. In this regard, triboelectric generation has received much attention as one of several new alternative energy sources. Among the triboelectric generation methods, solid-liquid triboelectric nanogenerators (SLTENGs) have been actively investigated owing to their durability and broad applicability. In this paper, we report on the optimum arrangement of SLTENGs to increase the generation of electrical energy. When hydrophobic SLTENGs are arranged in parallel with a specific intervening gap, the friction area between the water and the surface of the SLTENGs is changed owing to the different penetration distances of water between them. This difference affects the amount of triboelectricity generated; this change in the water contact area is caused by the capillary phenomenon. Therefore, we investigated the effect of the gap on water penetration and formulated an optimum arrangement to achieve optimum electricity generation efficiency when multiple SLTENGs are contained in a limited volume. The proposed optimum arrangement of SLTENGs is expected to have high utilization in energy harvesting from natural environment sources such as wave energy or water flow.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3