Mapping microbiome-redox spectrum and evaluating Microbial-Redox Index in chronic gastritis

Author:

Panigrahi Manas Kumar,Kaliaperumal Venkatesh,Akella Abhishek,Venugopal Giriprasad,Ramadass Balamurugan

Abstract

AbstractPeptic ulcer disease (PUD) and chronic gastritis are prevalent in developing countries. The role of oxidative stress in the pathogenesis of gastrointestinal mucosal disorders is well recognized. In PUD, the gastric mucosa and its associated microbiome are subject to diet and stress-induced oxidative perturbations. Tissue redox potential (ORP) measurement can quantify oxidative stress, reflecting the balance between prooxidants and antioxidants. This study hypothesizes that the oxidative stress quantified by tissue ORP will be associated with characteristic changes in the mucosa-associated microbiome in PUD and gastritis. In addition, we propose using relative microbial abundance as a quantitative marker of mucosal health. Endoscopy was performed to obtain gastric mucosal biopsies from ten PUD and ten non-ulcer dyspepsia (NUD) patients. The tissue ORP was measured directly with a microelectrode using a biopsy specimen. A second specimen from an adjacent site was subjected to 16s rRNA gene sequencing. From the OTUs, the relative abundance of the microbial taxon in each of the samples was derived. We analyzed the genome of the predominant species for genes encoding the utilization of oxygen as an electron acceptor in respiration and for the presence of antioxidant defense mechanisms. The organisms were then grouped based on their established and inferred redox traits. Shannon diversity index and Species richness were calculated on rarefied data. The relative abundance of organisms that prefer high ORP over those that favor low ORP is conceived as the “Microbial Redox Index (MRI),” an indicator of mucosal health. In the gastric mucosa, aerobic species predominate and are more diverse than the anaerobes. The predominant aerobes are Helicobacter pylori and Sphingobacterium mizutaii. The abundance of these two species had an inverse correlation with the abundance of low ORP preferring anaerobes. Their relative abundance ratio (Microbial Redox Index) correlated with the tissue oxidation–reduction potential (ORP), a direct measure of oxidative stress. Correlation analysis also revealed that the abundance of all anaerobes inversely correlated with the dominant aerobic taxa. In addition, Shannon and Species richness diversity indices, the probable indicators of mucosal health, were negatively correlated with Microbial Redox Index. Using PUD as a prototype mucosal disease, this article describes a generalized approach to infer and quantify mucosal oxidative stress by analyzing the relative abundance of microorganisms that preferentially grow at the extremes of the tissue redox potential. This ratiometric Microbial Redox Index can also be assessed using simple qPCR without the need for sequencing. The approach described herein may be helpful as a widely applicable quantitative measure of mucosal health with prognostic and therapeutic implications.

Funder

AIIMS Bhubaneswar

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3