RNase E biomolecular condensates stimulate PNPase activity

Author:

Collins Michael J.,Tomares Dylan T.,Nandana Vidhyadhar,Schrader Jared M.ORCID,Childers W. Seth

Abstract

AbstractBacterial Ribonucleoprotein bodies (BR-bodies) play an essential role in organizing RNA degradation via phase separation in the cytoplasm of bacteria. BR-bodies mediate multi-step mRNA decay through the concerted activity of the endoribonuclease RNase E coupled with the 3′-5′ exoribonuclease Polynucleotide Phosphorylase (PNPase). In vivo, studies indicated that the loss of PNPase recruitment into BR-bodies led to a significant build-up of RNA decay intermediates in Caulobacter crescentus. However, it remained unclear whether this is due to a lack of colocalized PNPase and RNase E within BR-bodies or whether PNPase’s activity is stimulated within the BR-body. We reconstituted RNase E’s C-terminal domain with PNPase towards a minimal BR-body in vitro to distinguish these possibilities. We found that PNPase’s catalytic activity is accelerated when colocalized within the RNase E biomolecular condensates, partly due to scaffolding and mass action effects. In contrast, disruption of the RNase E-PNPase protein–protein interaction led to a loss of PNPase recruitment into the RNase E condensates and a loss of ribonuclease rate enhancement. We also found that RNase E’s unique biomolecular condensate environment tuned PNPase’s substrate specificity for poly(A) over poly(U). Intriguingly, a critical PNPase reactant, phosphate, reduces RNase E phase separation both in vitro and in vivo. This regulatory feedback ensures that under limited phosphate resources, PNPase activity is enhanced by recruitment into RNase E’s biomolecular condensates.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3