Facile Recoverable and Reusable Macroscopic Alumina Supported Ni-based Catalyst for Efficient Hydrogen Production

Author:

Teo Siow Hwa,Yap Davin Kin Yew,Mansir Nasar,Islam Aminul,Taufiq-Yap Yun Hin

Abstract

Abstract A γ-NA5 catalyst in the form of pellet was first to be reported and was pioneering in gasification to accelerate the production of syngas through biomass (palm empty fruit brunch) conversion. The synthesised γ-NA5 pellet possesses a high surface area of 212.32 m2 g−1, which renders more active sites for hydrocarbon cracking, subsequently leading to high H2 production (0.0716 m3 kg−1). Additionally, the pellet exhibits remarkable reversibility and reusability with 91% H2 production efficiency being retained after five consecutive gasification cycles. Distinctively, the feature of the synthesised γ-NA5 pellet from the conventional powder-like catalyst is that it eases the separation of the used catalyst from the biomass ash, and subsequently facilitates regeneration solely by calcination process. The loading of 20 wt.% optimised amount of catalyst itself has successfully shorten the completion of gasification process up to 135 min, which is highly feasible for a large scale industrial usage after considering the cost of the catalyst, facile preparation method, and catalyst’s effectiveness towards gasification.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3