Untargeted metabolomics analysis on kidney tissues from mice reveals potential hypoxia biomarkers

Author:

Sajid Muhammad Imran,Nunez Francisco J.,Amirrad Farideh,Roosan Moom Rahman,Vojtko Tom,McCulloch Scott,Alachkar Amal,Nauli Surya M.

Abstract

AbstractChronic hypoxia may have a huge impact on the cardiovascular and renal systems. Advancements in microscopy, metabolomics, and bioinformatics provide opportunities to identify new biomarkers. In this study, we aimed at elucidating the metabolic alterations in kidney tissues induced by chronic hypoxia using untargeted metabolomic analyses. Reverse phase ultrahigh performance liquid chromatography-mass spectroscopy/mass spectroscopy (RP–UPLC–MS/MS) and hydrophilic interaction liquid chromatography (HILIC)–UPLC–MS/MS methods with positive and negative ion mode electrospray ionization were used for metabolic profiling. The metabolomic profiling revealed an increase in metabolites related to carnitine synthesis and purine metabolism. Additionally, there was a notable increase in bilirubin. Heme, N-acetyl-l-aspartic acid, thyroxine, and 3-beta-Hydroxy-5-cholestenoate were found to be significantly downregulated. 3-beta-Hydroxy-5-cholestenoate was downregulated more significantly in male than female kidneys. Trichome Staining also showed remarkable kidney fibrosis in mice subjected to chronic hypoxia. Our study offers potential intracellular metabolite signatures for hypoxic kidneys.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference59 articles.

1. Luks, A. M., Johnson, R. J. & Swenson, E. R. Chronic kidney disease at high altitude. J. Am. Soc. Nephrol. 19, 2262–2271 (2008).

2. Arestegui, A. H. et al. High altitude renal syndrome (HARS). J. Am. Soc. Nephrol. 22, 1963–1968 (2011).

3. Wang, S.-Y., Gao, J. & Zhao, J.-H. Effects of high altitude on renal physiology and kidney diseases. Front. Physiol. 13, 969456 (2022).

4. Fine, L., Orphanides, C. & Norman, J. Progressive renal disease: The chronic hypoxia hypothesis. Kidney Int. Suppl. 65, S74-78 (1998).

5. Fine, L. G. & Norman, J. T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74, 867–872 (2008).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3