Two-sample mendelian randomization analysis investigates ambient fine particulate matter's impact on cardiovascular disease development

Author:

Liang Xiao,Liang Lianjing,Fan Yuchao

Abstract

AbstractPM2.5, a key component of air pollution, significantly threatens public health. Cardiovascular disease is increasingly associated with air pollution, necessitating more research. This study used a meticulous two-sample Mendelian randomization (MR) approach to investigate the potential causal link between elevated PM2.5 levels and 25 types of cardiovascular diseases. Data sourced from the UK Biobank, focusing on individuals of European ancestry, underwent primary analysis using Inverse Variance Weighting. Additional methods such as MR-Egger, weighted median, Simple mode, and Weighted mode provided support. Sensitivity analyses assessed instrument variable heterogeneity, pleiotropy, and potential weak instrument variables. The study revealed a causal link between PM2.5 exposure and higher diagnoses of Atherosclerotic heart disease (primary or secondary, OR [95% CI] 1.0307 [1.0103–1.0516], p-value = 0.003 and OR [95% CI] 1.0179 [1.0028–1.0333], p-value = 0.0202) and Angina pectoris (primary or secondary, OR [95% CI] 1.0303 [1.0160–1.0449], p-value = 3.04e−05 and OR [95% CI] 1.0339 [1.0081–1.0603], p-value = 0.0096). Additionally, PM2.5 exposure increased the likelihood of diagnoses like Other forms of chronic ischaemic heart disease (secondary, OR [95% CI] 1.0193 [1.0042–1.0346], p-value = 0.0121), Essential hypertension (secondary, OR [95% CI] 1.0567 [1.0142–1.1010], p-value = 0.0085), Palpitations (OR [95% CI] 1.0163 [1.0071–1.0257], p-value = 5e−04), and Stroke (OR [95% CI] 1.0208 [1.0020–1.0401], p-value = 0.0301). Rigorous sensitivity analyses confirmed these significant findings' robustness and validity. Our study revealed the causal effect between higher PM2.5 concentrations and increased cardiovascular disease risks. This evidence is vital for policymakers and healthcare providers, urging targeted interventions to reduce PM2.5 levels.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3