A hybrid swarm intelligence algorithm for region-based image fusion

Author:

Salgotra Rohit,Lamba Amanjot Kaur,Talwar Dhruv,Gulati Dhairya,Gandomi Amir H.

Abstract

AbstractThis paper proposes a novel multi-hybrid algorithm named DHPN, using the best-known properties of dwarf mongoose algorithm (DMA), honey badger algorithm (HBA), prairie dog optimizer (PDO), cuckoo search (CS), grey wolf optimizer (GWO) and naked mole rat algorithm (NMRA). It follows an iterative division for extensive exploration and incorporates major parametric enhancements for improved exploitation operation. To counter the local optima problems, a stagnation phase using CS and GWO is added. Six new inertia weight operators have been analyzed to adapt algorithmic parameters, and the best combination of these parameters has been found. An analysis of the suitability of DHPN towards population variations and higher dimensions has been performed. For performance evaluation, the CEC 2005 and CEC 2019 benchmark data sets have been used. A comparison has been performed with differential evolution with active archive (JADE), self-adaptive DE (SaDE), success history based DE (SHADE), LSHADE-SPACMA, extended GWO (GWO-E), jDE100, and others. The DHPN algorithm is also used to solve the image fusion problem for four fusion quality metrics, namely, edge-based similarity index ($$Q^{AB/F}$$ Q A B / F ), sum of correlation difference (SCD), structural similarity index measure (SSIM), and artifact measure ($$N^{AB/F}$$ N A B / F ). The average $$Q^{AB/F} = 0.765508$$ Q A B / F = 0.765508 , $$SCD = 1.63185$$ S C D = 1.63185 , $$SSIM = 0.726317$$ S S I M = 0.726317 , and $$N^{AB/F} = 0.006617$$ N A B / F = 0.006617 shows the best combination of results obtained by DHPN with respect to the existing algorithms such as DCH, CBF, GTF, JSR and others. Experimental and statistical Wilcoxon’s and Friedman’s tests show that the proposed DHPN algorithm performs significantly better in comparison to the other algorithms under test.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3