The influence of different morphological units on the turbulent flow characteristics in step-pool mountain streams

Author:

Thazhathe Kalathil Sruthi,Chandra Venu

Abstract

AbstractThe morphology of step-pools is often implemented for ecological restoration and for the creation of close-to-nature fish passes. Step-pools display spatio-temporal variations in bed and flow characteristics due to meso-scale units such as step, tread, base of step, and pool. Exclusive research on the effects of bed variations in step-pools on the flow dynamics is limited. Here, we conducted laboratory experiments on a physical model downscaled from a field site in the Western Ghats, Kerala, India. The results of Kruskal–Wallis ANOVA show significant differences in the velocity and turbulent intensities for the morphological units. A regression equation of the form Power-Allometric1 has been proposed to relate the normalized turbulent kinetic energy with the velocity magnitude. The present study also estimated the range of Reynolds shear stress and energy dissipation factor existent in the step-pool systems. The normalized values of Reynolds shear stress in the x–z plane ranged from − 19.477 to 13.729, and energy dissipation factors obtained for the three step-pool systems are 321, 207, and 123 W/m3; both the results reveal insufficient pool volume for adequate energy dissipation. The study concludes that while designing close-to-nature step-pool fish passes, pool dimensions should be finalized with respect to the target aquatic species.

Funder

National Technology Centre for Ports, Waterways and Coasts

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3