Selecting an optimal approach to reduce energy crises under interval-valued intuitionistic fuzzy environment

Author:

Alghazzawi Dilshad,Alolaiyan Hanan,Ashfaq Humaira,Shuaib Umer,Khalifa Hamiden Abd El-Wahed,Gomaa Heba Ghareeb,Xin Qin

Abstract

AbstractThe concept of interval-valued intuitionistic fuzzy sets is intellectually stimulating and holds significant utility in the representation and analysis of real-world problems. The development of similarity measures within the class of interval-valued intuitionistic fuzzy sets possesses significant importance across various academic disciplines, particularly in the fields of decision-making and pattern recognition. The utilization of similarity measures is of utmost importance in the decision-making process when implementing interval-valued intuitionistic fuzzy sets. This is due to its inherent capability to quantitatively assess the level of resemblance or similarity between two interval-valued intuitionistic fuzzy sets. In this article, the drawbacks of the existing similarity measures in the context of an interval-valued intuitionistic fuzzy environment are addressed, and a novel similarity measure is presented. Many fundamental properties of this new interval-valued intuitionistic fuzzy similarity measure are also established, and the effectiveness of this similarity measure is illustrated by presenting a useful example. Moreover, a comparison is given to demonstrate the validity of the newly proposed similarity measure within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment. In addition, an algorithm is designed to solve multi-criteria decision making problems by means of the proposed measure in the interval-valued intuitionistic fuzzy setting. Furthermore, this newly defined similarity measure is successfully applied to select an optimal renewable energy source to reduce energy crises. Finally, we conduct a comparative study to showcase the authenticity of the recently defined technique within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3