Identification of prognostic signature of non–small cell lung cancer based on TCGA methylation data

Author:

Wang Yifan,Wang Ying,Wang Ying,Zhang Yongjun

Abstract

AbstractNon–small lung cancer (NSCLC) is a common malignant disease with very poor outcome. Accurate prediction of prognosis can better guide patient risk stratification and treatment decision making, and could optimize the outcome. Utilizing clinical and methylation/expression data in The Cancer Genome Atlas (TCGA), we conducted comprehensive evaluation of early-stage NSCLC to identify a methylation signature for survival prediction. 349 qualified cases of NSCLC with curative surgery were included and further grouped into the training and validation cohorts. We identified 4000 methylation loci with prognostic influence on univariate and multivariate regression analysis in the training cohort. KEGG pathway analysis was conducted to identify the key pathway. Hierarchical clustering and WGCNA co-expression analysis was performed to classify the sample phenotype and molecular subtypes. Hub 5′-C-phosphate-G-3′ (CpG) loci were identified by network analysis and then further applied for the construction of the prognostic signature. The predictive power of the prognostic model was further validated in the validation cohort. Based on clustering analysis, we identified 6 clinical molecular subtypes, which were associated with different clinical characteristics and overall survival; clusters 4 and 6 demonstrated the best and worst outcomes. We identified 17 hub CpG loci, and their weighted combination was used for the establishment of a prognostic model (RiskScore). The RiskScore significantly correlated with post-surgical outcome; patients with a higher RiskScore have worse overall survival in both the training and validation cohorts (P < 0.01). We developed a novel methylation signature that can reliably predict prognosis for patients with NSCLC.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3