Author:
Zhang Gongqiao,Hui Gangying,Yang Aiming,Zhao Zhonghua
Abstract
AbstractThis study brings insight into interpreting forest structural diversity and explore the classification of individuals according to the distribution of the neighbours in natural forests. Natural forest communities with different latitudes and distribution patterns in China were used. Each tree and its nearest neighbours form a structural unit. Random structural units (or random trees) in natural forests were divided into different sub-types based on the uniform angle index (W). The proportions of different random structural units were analysed. (1) There are only two types of random structural units: type R1 looks similar to a dumbbell, and type R2 looks similar to a torch. These two random structural units coexist in natural forests simultaneously. (2) The proportion of type R1 is far less than that of R2, is only approximately 1/3 of all random structural units or random trees; R2 accounts for approximately 2/3. Furthermore, the proportion of basal area presents the same trend for both random structural units and random trees. R2 has approximately twice the basal area of R1. Random trees (structural units) occupy the largest part of natural forest communities in terms of quantity and basal area. Meanwhile, type R2 is the largest part of random trees (structural units). This study finds that the spatial formation mechanism of natural forest communities which is of great significance to the cultivation of planted forests.
Funder
Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry
National Key Research and Development Plan of The 13th Five-Year Plan
Basic Research Fund of Research Institute of Forestry, Chinese Academy of Forestry
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Zenner, E. Does old-growth condition imply high live-tree structural complexity?. For. Ecol. Manag. 195, 243–258 (2004).
2. Forest Ecosystem Management Assessment Team (FEMAT). Draft Supplemental Environmental Impact Statement on Management of Habitat for Late Successional and Oldgrowth Forest Related Species within the Range of the Northern Spotted Owl (US Government Printing Office, Washington, DC, 1993).
3. Wan, P. et al. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inform. 50, 86–94 (2019).
4. Carrer, M., Castagneri, D., Popa, I., Pividori, M. & Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 407, 125–134 (2018).
5. Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献