A simple and effective approach to quantitatively characterize structural complexity

Author:

Zhang Gongqiao,Hui Gangying,Yang Aiming,Zhao Zhonghua

Abstract

AbstractThis study brings insight into interpreting forest structural diversity and explore the classification of individuals according to the distribution of the neighbours in natural forests. Natural forest communities with different latitudes and distribution patterns in China were used. Each tree and its nearest neighbours form a structural unit. Random structural units (or random trees) in natural forests were divided into different sub-types based on the uniform angle index (W). The proportions of different random structural units were analysed. (1) There are only two types of random structural units: type R1 looks similar to a dumbbell, and type R2 looks similar to a torch. These two random structural units coexist in natural forests simultaneously. (2) The proportion of type R1 is far less than that of R2, is only approximately 1/3 of all random structural units or random trees; R2 accounts for approximately 2/3. Furthermore, the proportion of basal area presents the same trend for both random structural units and random trees. R2 has approximately twice the basal area of R1. Random trees (structural units) occupy the largest part of natural forest communities in terms of quantity and basal area. Meanwhile, type R2 is the largest part of random trees (structural units). This study finds that the spatial formation mechanism of natural forest communities which is of great significance to the cultivation of planted forests.

Funder

Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry

National Key Research and Development Plan of The 13th Five-Year Plan

Basic Research Fund of Research Institute of Forestry, Chinese Academy of Forestry

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3