A fuzzy logic-based secure hierarchical routing scheme using firefly algorithm in Internet of Things for healthcare

Author:

Hosseinzadeh Mehdi,Yoo Joon,Ali Saqib,Lansky Jan,Mildeova Stanislava,Yousefpoor Mohammad Sadegh,Ahmed Omed Hassan,Rahmani Amir Masoud,Tightiz Lilia

Abstract

AbstractThe Internet of Things (IoT) is a universal network to supervise the physical world through sensors installed on different devices. The network can improve many areas, including healthcare because IoT technology has the potential to reduce pressure caused by aging and chronic diseases on healthcare systems. For this reason, researchers attempt to solve the challenges of this technology in healthcare. In this paper, a fuzzy logic-based secure hierarchical routing scheme using the firefly algorithm (FSRF) is presented for IoT-based healthcare systems. FSRF comprises three main frameworks: fuzzy trust framework, firefly algorithm-based clustering framework, and inter-cluster routing framework. A fuzzy logic-based trust framework is responsible for evaluating the trust of IoT devices on the network. This framework identifies and prevents routing attacks like black hole, flooding, wormhole, sinkhole, and selective forwarding. Moreover, FSRF supports a clustering framework based on the firefly algorithm. It presents a fitness function that evaluates the chance of IoT devices to be cluster head nodes. The design of this function is based on trust level, residual energy, hop count, communication radius, and centrality. Also, FSRF involves an on-demand routing framework to decide on reliable and energy-efficient paths that can send the data to the destination faster. Finally, FSRF is compared to the energy-efficient multi-level secure routing protocol (EEMSR) and the enhanced balanced energy-efficient network-integrated super heterogeneous (E-BEENISH) routing method based on network lifetime, energy stored in IoT devices, and packet delivery rate (PDR). These results prove that FSRF improves network longevity by 10.34% and 56.35% and the energy stored in the nodes by 10.79% and 28.51% compared to EEMSR and E-BEENISH, respectively. However, FSRF is weaker than EEMSR in terms of security. Furthermore, PDR in this method has dropped slightly (almost 1.4%) compared to that in EEMSR.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3