Hydromechanical impact of basement rock on injection-induced seismicity in Illinois Basin

Author:

Bondarenko NikitaORCID,Podladchikov YuryORCID,Makhnenko Roman

Abstract

AbstractThe common explanation of observed injection-induced microseismicity is based on the measured stress state at the injection interval and the assumption that it remains the same in the vicinity. We argue here that representing the stress state in different geologic formations over the injection site with the single Mohr’s circle is insufficient due to local stratigraphic features and contrast in compressibilities of the involved formations. The role of hydromechanical coupling in the microseismic response is also crucial for the proper assessment of the problem. Thoroughly monitored Illinois Basin Decatur Project revealed the majority of CO2 injection-associated microseismic events being originated in the crystalline basement. Even though basement faults can serve as the conduits for fluid flow—the predicted pressure increase seems to be insufficient to trigger seismicity. To address this issue, accurate laboratory measurements of rock properties from the involved formations are conducted. The pre-injection stress state and its evolution are evaluated with the hydromechanically coupled numerical model. It appears that the presence of an offset in a stiff competent layer affects the stress state in its vicinity. Therefore, both the pre-injection stress state and its evolution during the fluid injection should be addressed during the induced seismicity assessment.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference31 articles.

1. Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R. & Davies, R. J. Global review of human-induced earthquakes. Earth Sci. Rev. 178, 438–514 (2018).

2. Ellsworth, W. L. Injection-induced earthquakes. Science 341(6142), 1225942–1225951 (2013).

3. Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective. Rev. Geophys. 55(2), 310–340 (2017).

4. Rogelj, J. et al. Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Developments, and Efforts to Eradicate Poverty (eds. Masson-Delmotte, V. et al.) 93–174 (2018).

5. Vilarrasa, V. & Carrera, J. Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc. Natl. Acad. Sci. U. S. A. 112(19), 5938–5943 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3