A machine learning method for the identification and characterization of novel COVID-19 drug targets

Author:

Schultz Bruce,DeLong Lauren Nicole,Masny Aliaksandr,Lentzen Manuel,Raschka Tamara,van Dijk David,Zaliani Andrea,Hansen Anne Funck,Sabine ,Rüping Kugler Stefan,Burmeister Jan,Kohlhammer Jörn,Sarau George,Christiansen Silke,Kannt Aimo,Zaliani Andrea,Foldenauer Ann Christina,Claussen Carsten,Resch Eduard,Frank Kevin,Gribbon Phil,Kuzikov Maria,Keminer Oliver,Laue Hendrik,Hahn Horst,Hirsch Jochen,Wischnewski Marco,Günther Matthias,Archipovas Saulius,Kodamullil Alpha Tom,Gemünd Andre,Schultz Bruce,Steinborn Carina,Ebeling Christian,Fernández Daniel Domingo,Hermanowski Helena,Fröhlich Holger,Klein Jürgen,Lentzen Manuel,Jacobs Marc,Hofmann-Apitius Martin,Knieps Meike,Krapp Michael,Wendland Philipp Johannes,Wegner Philipp,Khatami Sepehr Golriz,Springstubbe Stephan,Linden Thomas,Fluck Juliane,Fröhlich Holger,

Abstract

AbstractIn addition to vaccines, the World Health Organization sees novel medications as an urgent matter to fight the ongoing COVID-19 pandemic. One possible strategy is to identify target proteins, for which a perturbation by an existing compound is likely to benefit COVID-19 patients. In order to contribute to this effort, we present GuiltyTargets-COVID-19 (https://guiltytargets-covid.eu/), a machine learning supported web tool to identify novel candidate drug targets. Using six bulk and three single cell RNA-Seq datasets, together with a lung tissue specific protein-protein interaction network, we demonstrate that GuiltyTargets-COVID-19 is capable of (i) prioritizing meaningful target candidates and assessing their druggability, (ii) unraveling their linkage to known disease mechanisms, (iii) mapping ligands from the ChEMBL database to the identified targets, and (iv) pointing out potential side effects in the case that the mapped ligands correspond to approved drugs. Our example analyses identified 4 potential drug targets from the datasets: AKT3 from both the bulk and single cell RNA-Seq data as well as AKT2, MLKL, and MAPK11 in the single cell experiments. Altogether, we believe that our web tool will facilitate future target identification and drug development for COVID-19, notably in a cell type and tissue specific manner.

Funder

Fraunhofer-Gesellschaft

Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference40 articles.

1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int (2022). Accessed 21 Dec 2022.

2. COVID-19 treatments: Authorised. https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/treatments-covid-19/covid-19-treatments-authorised (2023). Accessed 8 Mar 2023.

3. Coronavirus (COVID-19)|Drugs. https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs (2023). Accessed 8 Mar 2023.

4. Lee, C. Y. & Chen, Y.-P.P. New insights into drug repurposing for COVID-19 using deep learning. IEEE Trans. Neural Netw. Learn. Syst. 32, 4770–4780. https://doi.org/10.1109/TNNLS.2021.3111745 (2021).

5. Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Dig. Health 2, e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8 (2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3