Experimental realization of visible gas sensing technology based on spatial heterodyne spectroscopy

Author:

Zhang Wen-li,Liu Zhao-yu,Liang Kun,Wang Yi,Chen Ke-fan,Sun Yao-wei,Wang Sheng

Abstract

AbstractBased on the characteristics of optical absorption gas sensing technology (OA-GST) and spatial heterodyne spectroscopy (SHS), a novel type of visual gas sensing technology (V-GST) can present the invisible gas information in the form of two-dimensional visual fingerprint, which has attracted people's attention. In this paper, we have realized the NO2 detection of V-GST in the laboratory environment for the first time. Experimental results show that: V-GST not only has different interferogram response to different spectra, but also has good response to different concentrations of NO2, which lays a foundation for the application of this technology in gas sensing. And the average classification recognition rate of the system for different band NO2 response data is over 80%, which verifies the effectiveness of the V-GST in gas detection.

Funder

Henan Provincial Department of Science and Technology Research Project

National Natural Science Foundation of China

Training Program for Young Scholar of Henan Province for Colleges and Universities

Program for Science & Technology Innovation Talents in Universities of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3