Tailoring topological edge states with photonic crystal nanobeam cavities

Author:

Gong Yongkang,Guo Liang,Wong Stephan,Bennett Anthony J.,Oh Sang Soon

Abstract

AbstractThe realization of topological edge states (TESs) in photonic systems has provided unprecedented opportunities for manipulating light in novel manners. The Su–Schrieffer–Heeger (SSH) model has recently gained significant attention and has been exploited in a wide range of photonic platforms to create TESs. We develop a photonic topological insulator strategy based on SSH photonic crystal nanobeam cavities. In contrast to the conventional photonic SSH schemes which are based on alternately tuned coupling strength in one-dimensional lattice, our proposal provides higher flexibility and allows tailoring TESs by manipulating mode coupling in a two-dimensional manner. We reveal that the proposed hole-array based nanobeams in a dielectric membrane can selectively tailor single or double TESs in the telecommunication region by controlling the coupling strength of the adjacent SSH nanobeams in both transverse and axial directions. Our finding provides an additional degree of freedom in exploiting the SSH model for integrated topological photonic devices and functionalities based on the well-established photonic crystal nanobeam cavity platforms.

Funder

The SCW projects and Sêr Cymru II Rising Star Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3