Crop–livestock integration enhanced soil aggregate-associated carbon and nitrogen, and phospholipid fatty acid

Author:

Bansal Sangeeta,Chakraborty Poulamee,Kumar Sandeep

Abstract

AbstractIntegrated crop–livestock (ICL) production enhances diversification and provides ecosystem benefits by improving nutrient cycling and energy efficiency, thus, increasing overall farm productivity. However, a detailed study is needed to understand the influence of crop diversification and grazing animals on soil aggregation and associated carbon (C) and nitrogen (N), and microbial properties, especially compared with a grazed native pasture. We investigated the soil aggregate size distribution and associated C and N fractions, glomalin-related soil protein, and soil phospholipid fatty acid (PLFA) to understand the collective influence of livestock grazing of crop residue and cover crops (CC) and compared it with native pasture and non-grazed traditional production systems. The study was conducted in South Dakota at four different locations consisting of three long-term (> 30 years) on-farm sites: 1 (Salem), 2 (Bristol), 3 (Bristol) with three treatments that included ICL (corn, Zea Mays L.-soybean, Glycine max L.-oats, Avena sativa L.-CC with cattle grazing); natural ecosystem (NE) or native pasture; and control (CNT) (corn–soybean-without grazing or CC). Experimental site 4 (Beresford) with study duration of 3-year consisted of oats, oats with CC, oats with CC + grazing, and grazed pasture mix. Soil samples were collected from 0 to 5 cm depth at all four sites in summer 2019. Data showed that at sites 1 and 2, ICL had significantly (P ≤ 0.5) greater fractionation of 0.053–0.25 mm and > 4 mm aggregates compared with NE and CNT. At site 1, ICL showed significantly higher soil organic carbon (SOC, 36–49%) and higher nitrogen (33–44%) in > 4 mm aggregates than NE and CNT. At site 2, ICL had 32–41% higher SOC than NE and CNT for 0.25–0.5 mm aggregates. At site 1, NE enhanced total phospholipid fatty acid (PLFA), total bacterial biomass, gram (+), gram (−) bacteria than CNT, however, it did not vary significantly than ICL. Grazed pasture mix at site 4 had higher total PLFA (40.81 nmol g−1 soil) than the other treatments. The principal components 1 and 2 accounted for 33% and 22% of the variation, respectively, where the majority of the microbial compositions and aggregate-associated C and N were influenced by ICL and NE compared with corn–soybean without grazing or short-term oats/CC/grazing treatments. Integrated crop–livestock system and NE enhanced C and N concentrations in macroaggregates as well as in microaggregates. It is concluded that ICL and NE systems are sustainable prospects in enhancing overall soil health. Integrating crop and livestock improved physicochemical and microbial properties compared to the traditional corn–soybean system.

Funder

USDA-NIFA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3