Influence of normal tide and the Great Tsunami as recorded through hourly-resolution micro-analysis of a mussel shell
-
Published:2021-10-06
Issue:1
Volume:11
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Sano Yuji,Okumura Tomoyo,Murakami-Sugihara Naoko,Tanaka Kentaro,Kagoshima Takanori,Ishida Akizumi,Hori Masako,Snyder Glen T.,Takahata Naoto,Shirai Kotaro
Abstract
AbstractWe report here hourly variations of Mg/Ca, Sr/Ca, and Ba/Ca ratios in a Mediterranean mussel shell (Mytilus galloprovincialis) collected at the Otsuchi bay, on the Pacific coast of northeastern Japan. This bivalve was living in the intertidal zone, where such organisms are known to form a daily or bidaily growth line comprised of abundant organic matter. Mg/Ca ratios of the inner surface of the outer shell layer, corresponding to the most recent date, show cyclic changes at 25–90 μm intervals, while no interpretable variations are observed in Sr/Ca and Ba/Ca ratios. High Mg/Ca ratios were probably established by (1) cessation of the external supply of Ca and organic layer forming when the shell is closed at low tide, and (2) the strong binding of Mg to the organic layer, but not of Sr and Ba. Immediately following the great tsunami induced by the 2011 Tohoku earthquake, Mg/Ca enrichment occurred, up to 10 times that of normal low tide, while apparent Ba/Ca enrichment was observed for only a few days following the event, therefore serving a proxy of the past tsunami. Following the tsunami, periodic peaks and troughs in Mg/Ca continued, perhaps due to a biological memory effect as an endogenous clock.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference32 articles.
1. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75million years. Nature 433, 1–5 (2005). 2. Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature 445, 299–302 (2007). 3. Tripati, A. K., Roberts, C. D. & Eagle, R. A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326, 1394–1397 (2009). 4. Montagna, P., McCulloch, M., Taviani, M., Mazzoli, C. & Vendrell, B. Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312, 1788–1791 (2006). 5. Masson-Delmotte, V., Schulz,M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao X., Timmermann, A., 2013. Information from paleoclimate archives. In: climate change the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|