Abstract
AbstractThe ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate ([EMIM][MeSO3]) has been considered as a promising alternative desiccant to triethylene glycol and lithium bromide commonly used in the industry. In this paper, the water activity coefficient of this binary system was measured from 303 K to 363 K with water concentration from 18% to 92%. The interaction energies between the ionic liquid molecules ($${g}_{22}$$g22) and between the ionic liquid and water molecules ($${g}_{12}$$g12) for the [EMIM][MeSO3]/water binary system were determined from the water activity coefficient data using the Non-Random Two-Liquid (NRTL) model. The magnitude of the interaction energy between the [EMIM][MeSO3] and water molecules ($${g}_{12}$$g12) was found to be in the range of 45~49 kJ/mol, which was about 20% larger than that between the water molecules ($${g}_{11}$$g11) in the [EMIM][MeSO3]/water system. The large ($${g}_{12}$$g12) can explain many observed macroscopic thermodynamic properties such as strong hygroscopicity in the ionic liquid [EMIM][MeSO3]. These interaction energies were used to determine the heat of desorption of the [EMIM][MeSO3]/water system, and the obtained heat of desorption was in good agreement with that calculated from the conventional Clausius-Clapeyron Equation.
Funder
DOE | Office of Energy Efficiency and Renewable Energy
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献