Validating machine learning approaches for prediction of donor related complication in microsurgical breast reconstruction: a retrospective cohort study

Author:

Myung Yujin,Jeon Sungmi,Heo Chanyeong,Kim Eun-Kyu,Kang Eunyoung,Shin Hee-Chul,Yang Eun-Joo,Jeong Jae Hoon

Abstract

AbstractAutologous reconstruction using abdominal flaps remains the most popular method for breast reconstruction worldwide. We aimed to evaluate a prediction model using machine-learning methods and to determine which factors increase abdominal flap donor site complications with logistic regression. We evaluated the predictive ability of different machine learning packages, reviewing a cohort of breast reconstruction patients who underwent abdominal flaps. We analyzed 13 treatment variables for effects on the abdominal donor site complication rates. To overcome data imbalances, random over sampling example (ROSE) method was used. Data were divided into training and testing sets. Prediction accuracy, sensitivity, specificity, and predictive power (AUC) were measured by applying neuralnet, nnet, and RSNNS machine learning packages. A total of 568 patients were analyzed. The supervised learning package that performed the most effective prediction was neuralnet. Factors that significantly affected donor-related complication was size of the fascial defect, history of diabetes, muscle sparing type, and presence or absence of adjuvant chemotherapy. The risk cutoff value for fascial defect was 37.5 cm2. High-risk group complication rates analyzed by statistical method were significant compared to the low-risk group (26% vs 1.7%). These results may help surgeons to achieve better surgical outcomes and reduce postoperative burden.

Funder

Seoul National University Bundang Hospital Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3