Author:
Lovett B. A.,Firth E. C.,Tuck I. D.,Symonds J. E.,Walker S. P.,Perrott M. R.,Davie P. S.,Munday J. S.,Preece M. A.,Herbert N. A.
Abstract
AbstractSpinal anomalies are a recognised source of downgrading in finfish aquaculture, but identifying their cause(s) is difficult and often requires extensive knowledge of the underlying pathology. Late-onset spinal curvatures (lordosis, kyphosis, scoliosis) can affect up to 40% of farmed New Zealand Chinook (king) salmon (Oncorhynchus tshawytscha) at harvest, but little is known about their pathogenesis. Curvature development was radiographically documented in two related cohorts of commercially-farmed Chinook salmon throughout seawater production to determine (1) the timing of radiographic onset and relationships between (2) the curvature types, (3) the spinal regions in which they develop and (4) their associations with co-existing vertebral body anomalies (vertebral compression, fusion and vertical shift). Onset of curvature varied between individuals, but initially occurred eight months post-seawater transfer. There were strong associations between the three curvature types and the four recognised spinal regions: lordosis was predominantly observed in regions (R)1 and R3, kyphosis in R2 and R4, manifesting as a distinct pattern of alternating lordosis and kyphosis from head to tail. This was subsequently accompanied by scoliosis, which primarily manifested in spinal regions R2 and R3, where most of the anaerobic musculature is concentrated. Co-existing vertebral body anomalies, of which vertebral compression and vertical shift were most common, appeared to arise either independent of curvature development or as secondary effects. Our results suggest that spinal curvature in farmed New Zealand Chinook salmon constitutes a late-onset, rapidly-developing lordosis–kyphosis–scoliosis (LKS) curvature complex with a possible neuromuscular origin.
Funder
Callaghan Innovation
Ministry for Primary Industries
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Boglione, C. et al. Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev. Aquacult. 5, S121-S167 (2013).
2. Vagsholm, I. & Djupvik, H. Risk factors for spinal deformities in Atlantic salmon, Salmo salar L. Oceanogr. Lit. Rev. 7, 1235 (1998).
3. Branson, E. J. & Turnbull, T. Welfare and deformities in fish. Fish Welfare, 201–216 (2008).
4. Fjelldal, P. G., Hansen, T. J. & Berg, A. E. A radiological study on the development of vertebral deformities in cultured Atlantic salmon (Salmo salar L). Aquaculture 273, 721–728 (2007).
5. Koumoundouros, G. Morpho-anatomical abnormalities in Mediterranean marine aquaculture. Recent Adv. Aquacult. Res. 66, 125–148 (2010).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献