Failure mechanism and bearing force of CFRP strengthened square hollow section under compressive load

Author:

Huang Can,Wei Yan-hui,Ma Ke-jian,Liu Zhuo-qun,Tian Peng-gang,Zhao Bing-zhen

Abstract

AbstractCarbon fibre-reinforced polymer (CFRP) plates can efficiently repair or enhance the mechanical properties of the square hollow section. However, the loading end of such a CFRP-strengthened member is prone to local bearing failure under compressive load. Given this limitation, an innovative CFRP-plate-strengthened square hollow section composite member (CFRP-SHSCM) was raised, and the thick-walled section was welded on both ends of the thin-walled steel column. The mechanical properties of CFRP-SHSCMs were investigated through parameter finite element (FE) analysis, focusing on the influence of the amount of CFRP layers (nc), the slenderness ratio (λ), the initial geometric imperfections (v0), the CFRP layouts (2S and 4S) and the length of the exposed steel column (Le). The load–displacement curves, the bearing force, and typical failure modes were also acquired. Results indicated that with increasing nc and v0, and decreasing λ, the conventional CFRP-SHSCMs were prone to local bearing failure with poor ductility, leading to the insufficient use of the CFRP plate, in contrast, the improved CFRP-SHSCMs primarily underwent overall buckling failure and exhibited better bearing force and ductility. Finally, the modified Perry-Robertson formula was put forward to predict the ultimate load of the CFRP-SHSCMs. The coefficients of variation between the FE simulation and the theoretical results were 0.00436 and 0.0292, respectively.

Funder

Project of Youth Scholars of Guizhou University

Science Foundation for Youths of Education Commission of Guizhou Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3