Abstract
AbstractThe accumulation of detectable amounts of radon progeny in human tissues may be a risk factor for development and progression of chronic diseases. In this preliminary study, we analyzed the levels of alpha-emitting radon progeny Polonium-210 (210Po) in the olfactory epithelium, olfactory bulb, frontal lobe, and lung tissues in cadavers from the city of Sao Paulo, SP, Brazil. We also assessed the association between 210Po levels and exposure parameters for urban air pollution using linear regression models adjusted for age, sex, smoke, time living in Sao Paulo, daily commuting, socioeconomic index, and anthracosis (traffic-related black carbon accumulation in the pleural region and in lymph). Our findings show that the concentration of 210Po was associated with anthracosis in lungs of non-smokers (coefficient = 6.0; standard error = 2.9; p = 0.04). Individuals with lower socioeconomic status also had significantly higher 210Po levels in lungs (coefficient = −1.19; standard error = 0.58; p = 0.042). The olfactory bulb had higher 210Po levels than either olfactory epithelium (p = 0.071), frontal lobe (p < 0.001), or lungs (p = 0.037). Our findings of the deposition of 210Po in autopsy tissues suggest that airborne radionuclides may contribute to the development of chronic diseases, including neurodegenerative diseases.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Companhia Ambiental do Estado de Sao Paulo (CETESB). Qualidade do ar no estado de Sao Paulo. Annual Report (2018).
2. World Health Organization (WHO). Ambient air pollution: A global assessment of exposure and burden of disease. WHO Report (2016).
3. World Health Organization (WHO). World health statistics 2016: monitoring health for the SDGs, sustainable development goals. WHO Report (2016).
4. Block, M. L. & Calderón-Garcidueñas, L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences 1(32), 506–16 (2009).
5. Calderón-Garcidueñas, L. et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults. Toxicologic Pathology 36(2), 289–310 (2008).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献