A new class of nonreciprocal spin waves on the edges of 2D antiferromagnetic honeycomb nanoribbons

Author:

Ghader D.ORCID,Khater A.

Abstract

Abstract Antiferromagnetic two-dimensional (2D) materials are currently under intensive theoretical and experimental investigations in view of their potential applications in antiferromagnet-based magnonic and spintronic devices. Recent experimental studies revealed the importance of magnetic anisotropy and of Dzyaloshinskii-Moriya interactions (DMI) on the ordered ground state and the magnetic excitations in these materials. In this work we present a robust classical field theory approach to study the effects of anisotropy and the DMI on the edge and bulk spin waves in 2D antiferromagnetic nanoribbons. We predict the existence of a new class of nonreciprocal edge spin waves, characterized by opposite polarizations in counter-propagation. These novel edge spin waves are induced by the DMI and are fundamentally different from conventional nonreciprocal spin waves for which the polarization is independent of the propagation direction. We further analyze the effects of the edge structures on the magnetic excitations for these systems. In particular, we show that anisotropic bearded edge nanoribbons act as topologically trivial magnetic insulators with potentially interesting applications in magnonics. Our results constitute an important finding for current efforts seeking to establish unconventional magnonic devices utilizing spin wave polarization.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3