Downregulation of miR-181c-5p in Alzheimer’s disease weakens the response of microglia to Aβ phagocytosis

Author:

Li Rongjie,Yao Shanshan,Wei Feijie,Chen Meixiang,Zhong Yuanli,Zou Chun,Chen Liechun,Wei Lichun,Yang Chunxia,Zhang Xiyuan,Liu Ying

Abstract

AbstractAlzheimer’s disease (AD) is an age-associated neurodegenerative disease. Recently, studies have demonstrated the potential involvement of microRNA-181c-5p (miR-181c-5p) in AD. However, the mechanism through which miR-181c-5p is responsible for the onset and progression of this disease remains unclear, and our study aimed to explore this problem. Differential expression analysis of the AD dataset was performed to identify dysregulated genes. Based on hypergeometric analysis, AD differential the upstream regulation genes miR-181c-5p was found. We constructed a model where SH-SY5Y and BV2 cells were exposed to Aβ1-42 to simulate AD. Levels of tumor necrosis factor-alpha, interleukin-6, and IL-1β were determined using enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Phosphorylation levels of p-P38 and P38 were detected by Western blot. The level of apoptosis in BV2 cells under Aβ1-42 stress was exacerbated by miR-181c-5p mimic. Downregulated miR-181c-5p impaired the phagocytosis and degradation of Aβ by BV2 cells. The release of proinflammatory cytokines in BV2 cells with Aβ1-42 stress was alleviated by miR-181c-5p upregulation. Additionally, miR-181c-5p downregulation alleviated the phosphorylation of P38 in Aβ1-42-induced SH-SY5Y cells. In conclusion, miR-181c-5p improves the phagocytosis of Aβ by microglial cells in AD patients, thereby reducing neuroinflammation.

Funder

the Project of Nanning Scientific Research and Technology Development Plan

the Project of Qingxiu District of Nanning Scientific Research and Technology Development Plan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3