Abstract
AbstractThe autonomic innervation of the skin includes different subsets of adrenergic and cholinergic fibers both in humans and animals. The corresponding chemical code is complex and often difficult to ascertain. Accordingly, a detailed histochemical description of skin autonomic fiber subtypes is lacking in humans. To characterize skin autonomic nerve subtypes may help to better understand the selective damage of specific skin autonomic fibers affecting human diseases such as the adrenergic fibers directed to skin vessels in Parkinson’s disease or the cholinergic sudomotor fibers in Ross Syndrome. The present study aimed at characterizing subtypes of autonomic fibers in relation to their target organs by means of an immunofluorescent technique and confocal microscopy. We studied 8 healthy subjects (5 males and 3 females) aged 45 ± 2 (mean ± SE) years without predisposing causes for peripheral neuropathy or autonomic disorders. They underwent skin biopsy from proximal (thigh) and distal (leg) hairy skin. A combination of adrenergic (i.e. tyrosine-hydroxylase- TH and dopamine beta-hydroxylase- DbH) and cholinergic (vesicular acetylcholine transporter- VACHT) autonomic markers and neuropeptidergic (i.e. neuropeptide Y- NPY, calcitonin gene-related peptide- CGRP, substance P- SP, and vasoactive intestinal peptide- VIP) markers were used to characterize skin autonomic fibers. The analysed skin autonomic structures included: 58 sweat glands, 91 skin arterioles and 47 arrector pili muscles. Our results showed that all skin structures presented a sympathetic adrenergic but also cholinergic innervation although in different proportions. Sympathetic adrenergic fibers were particularly abundant around arterioles and arrector pili muscles whereas sympathetic cholinergic fibers were mainly found around sweat glands. Neuropeptides were differently expressed in sympathetic fibers: NPY were found in sympathetic adrenergic fibers around skin arterioles and very seldom sweat glands but not in adrenergic fibers of arrector pili muscles. By contrast CGRP, SP and VIP were expressed in sympathetic cholinergic fibers. Cholinergic fibers expressing CGRP, SP or VIP without TH or DbH staining were found in arterioles and arrector pili muscles and they likely represent parasympathetic fibers. In addition, all skin structures contained a small subset of neuropeptidergic fibers devoid of adrenergic and cholinergic markers with a likely sensory function. No major differences were found between males and females and proximal and distal sites. In summary hairy skin contains sympathetic adrenergic and cholinergic fibers differently distributed around skin structures with a specific distribution of neuropeptides. The autonomic skin innervation also contains a small amount of fibers, likely to be parasympathetic and sensory.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Lundberg, J. M., Hokfelt, T. & Schultzberg, M. Uvan/is-Wallensten K, Kohler C, Said S. Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: Evidence from combined immunohistochemstry and acethylcholinesterase staining. Neuroscience 4, 153–1559 (1979).
2. Lundberg, J. M. et al. Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand. 116, 477–480 (1981).
3. Björklund, H., Dalsgaard, C. J., Jonsson, C. E. & Hermansson, A. Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res. 243, 51–7 (1986).
4. Karanth, S. S., Springall, D. R., Kuhn, D. M., Levene, M. M. & Polak, J. M. An immunocytochemical study of cutaneous innervation and the distribution of neuropeptides and protein gene product 9.5 in man and commonly employed laboratory animals. Am J Anat. 191, 369–83 (1991).
5. Wallin, B. G. Microneurographic assessment of sympathetic nerve traffic. Suppl Clin Neurophysiol. 57, 345–51 (2004).
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献