Brain-wide dendrites in a near-optimal performance of dynamic range and information transmission

Author:

Lin Congping,Xu Fan,Zhang Yiwei

Abstract

AbstractDendrites receive and process signals from other neurons. The range of signal intensities that can be robustly distinguished by dendrites is quantified by the dynamic range. We investigate the dynamic range and information transmission efficiency of dendrites in relation to dendritic morphology. We model dendrites in a neuron as multiple excitable binary trees connected to the soma where each node in a tree can be excited by external stimulus or by receiving signals transmitted from adjacent excited nodes. It has been known that larger dendritic trees have a higher dynamic range. We show that for dendritic tress of the same number of nodes, the dynamic range increases with the number of somatic branches and decreases with the asymmetry of dendrites, and the information transmission is more efficient for dendrites with more somatic branches. Moreover, our simulated data suggest that there is an exponential association (decay resp.) of overall relative energy consumption (dynamic range resp.) in relation to the number of somatic branches. This indicates that further increasing the number of somatic branches (e.g. beyond 10 somatic branches) has limited ability to improve the transmission efficiency. With brain-wide neuron digital reconstructions of the pyramidal cells, 90% of neurons have no more than 10 dendrites. These suggest that actual brain-wide dendritic morphology is near optimal in terms of both dynamic range and information transmission.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

open subject of the State Key Laboratory of Advanced Electromagnetic Engineering and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3