Co-embedding of edges and nodes with deep graph convolutional neural networks

Author:

Zhou Yuchen,Huo Hongtao,Hou Zhiwen,Bu Lingbin,Mao Jingyi,Wang Yifan,Lv Xiaojun,Bu Fanliang

Abstract

AbstractGraph neural networks (GNNs) have significant advantages in dealing with non-Euclidean data and have been widely used in various fields. However, most of the existing GNN models face two main challenges: (1) Most GNN models built upon the message-passing framework exhibit a shallow structure, which hampers their ability to efficiently transmit information between distant nodes. To address this, we aim to propose a novel message-passing framework, enabling the construction of GNN models with deep architectures akin to convolutional neural networks (CNNs), potentially comprising dozens or even hundreds of layers. (2) Existing models often approach the learning of edge and node features as separate tasks. To overcome this limitation, we aspire to develop a deep graph convolutional neural network learning framework capable of simultaneously acquiring edge embeddings and node embeddings. By utilizing the learned multi-dimensional edge feature matrix, we construct multi-channel filters to more effectively capture accurate node features. To address these challenges, we propose the Co-embedding of Edges and Nodes with Deep Graph Convolutional Neural Networks (CEN-DGCNN). In our approach, we propose a novel message-passing framework that can fully integrate and utilize both node features and multi-dimensional edge features. Based on this framework, we develop a deep graph convolutional neural network model that prevents over-smoothing and obtains node non-local structural features and refined high-order node features by extracting long-distance dependencies between nodes and utilizing multi-dimensional edge features. Moreover, we propose a novel graph convolutional layer that can learn node embeddings and multi-dimensional edge embeddings simultaneously. The layer updates multi-dimensional edge embeddings across layers based on node features and an attention mechanism, which enables efficient utilization and fusion of both node and edge features. Additionally, we propose a multi-dimensional edge feature encoding method based on directed edges, and use the resulting multi-dimensional edge feature matrix to construct a multi-channel filter to filter the node information. Lastly, extensive experiments show that CEN-DGCNN outperforms a large number of graph neural network baseline methods, demonstrating the effectiveness of our proposed method.

Funder

National Natural Science Foundation of China-China State Railway Group Co., Ltd. Railway Basic Research Joint Fund

Scientific Funding for China Academy of Railway Sciences Corporation Limited

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference65 articles.

1. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning (eds. Precup, D. & Teh, Y. W.) vol. 70 1263–1272 (PMLR, 2017).

2. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. CoRR abs/1609.0 (2016).

3. Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7–12, 2015, Montreal, Quebec, Canada (eds. Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R.) 2224–2232 (2015).

4. Schlichtkrull, M. S. et al. Modeling relational data with graph convolutional networks. In The Semantic Web—15th International Conference, {ESWC} 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings (eds. Gangemi, A. et al.) vol. 10843, 593–607 (Springer, 2018).

5. Veličković, P. et al. Graph attention networks. In 6th International Conference on Learning Representations, {ICLR} 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings (OpenReview.net, 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3