From density functional theory to machine learning predictive models for electrical properties of spinel oxides

Author:

Elbaz Yuval,Caspary Toroker MaytalORCID

Abstract

AbstractThis work focuses on predicting and characterizing the electronic conductivity of spinel oxides, which are promising materials for energy storage devices and for the oxygen evolution and oxygen reduction reactions due to their attractive properties and abundance of transition metals that can act as active sites for catalysis. To this end, a new database was developed from first principles, including band structure and conductivity properties of spinel oxides, and machine learning algorithms were trained on this database to predict electronic conductivity and band gaps based solely on the compositions. The models developed in this study are scaled from the quantum level up to a continuum conductivity model. The relatively small database used in this study allowed for accurate predictions of band gap and conductivity. By altering the composition of spinel oxides, the model was able to predict high conductivity for spinels with high nickel content and to match experimental trends for manganese cobalt spinels. The ability to predict material properties is especially important in energy conversion devices such as batteries and supercapacitors where redox reactions take place.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3