Research on shock wave driving technology of methane explosion

Author:

Huang Chao-yuan,Liu Fei,Xin Kai,Gao Yong-hong,Duan Ya-peng

Abstract

AbstractIn order to improve the driving ability of the explosion wave simulation equipment, reduce the erosion effect of condensed explosives on the explosion wave simulation equipment, improve the safety of the test process, and make better use of the meteorological detonation driving method, it is necessary to optimize the source of the shock wave load in the driving section. Based on the finite volume method of FLACS, a methane detonation driving model corresponding to the test is established to explore the feasibility of using methane as an explosion source to test the structure against explosion shock wave. A methane detonation drive test was carried out to verify the accuracy of the numerical model. Finally, an engineering model for attenuation of shock wave overpressure peak value in pipeline is established by dimensional analysis, and the model coefficient is determined by numerical simulation and test data. The results show that the blast pressure is the highest when the methane volume ratio reaches 9.5 vol% in the methane-air mixture. Simply increasing oxygen content has little effect on the peak overpressure and positive pressure duration of shock wave. In the pure oxygen environment, the detonation effect can be achieved when the volume ratio of methane to oxygen is 1:2, and the incident pressure of the shock wave is proportional to the volume of the gas cloud. When the gas cloud volume is constant, a reasonable selection of methane-oxygen mixture ratio can achieve a better detonation effect, which can effectively increase the peak overpressure of the shock wave in the test section. The research results can provide technical reference for the development of new explosion wave simulation equipment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3