Attentional factorization machine with review-based user–item interaction for recommendation

Author:

Li Zheng,Jin Di,Yuan Ke

Abstract

AbstractIn recommender systems, user reviews on items contain rich semantic information, which can express users’ preferences and item features. However, existing review-based recommendation methods either use the static word vector model or cannot effectively extract long sequence features in reviews, resulting in the limited ability of user feature expression. Furthermore, the impact of different or useless feature interactions between users and items on recommendation performance is ignored. Therefore, we propose an attentional factorization machine with review-based user–item interaction for recommendation (AFMRUI), which first leverages RoBERTa to obtain the embedding feature of each user/item review, and combines bidirectional gated recurrent units with attention network to highlight more useful information in both user and item reviews. Then we adopt AFM to learn user–item feature interactions to distinguish the importance of different user–item feature interactions and further to obtain more accurate rating prediction, so as to promote recommendation. Finally, we conducted performance evaluation on five real-world datasets. Experimental results on five datasets demonstrated that the proposed AFMRUI outperformed the state-of-the-art review-based methods regarding two commonly used evaluation metrics.

Funder

the National Natural Science Foundation of China

Key Scientific Research Project Plan of Colleges and Universities in Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3