Predicting bentonite swelling pressure: optimized XGBoost versus neural networks

Author:

Utkarsh ,Jain Pradeep Kumar

Abstract

AbstractThe swelling pressure of bentonite and bentonite mixtures is critical in designing barrier systems for deep geological radioactive waste repositories. Accurately predicting the maximum swelling pressure is essential for ensuring these systems' long-term stability and sealing characteristics. In this study, we developed a constrained machine learning model based on the extreme gradient boosting (XGBoost) algorithm tuned with grey wolf optimization (GWO) to determine the maximum swelling pressure of bentonite and bentonite mixtures. A dataset containing 305 experimental data points was compiled, including relevant soil properties such as montmorillonite content, liquid limit, plastic limit, plasticity index, initial water content, and soil dry density. The GWO-XGBoost model, incorporating a penalty term in the loss function, achieved an R2 value of 0.9832 and an RMSE of 0.5248 MPa in the testing phase, outperforming feed-forward and cascade-forward neural network models. The feature importance analysis revealed that dry density and montmorillonite content were the most influential factors in predicting maximum swelling pressure. While the developed model demonstrates high accuracy and reliability, it may have limitations in capturing extreme values due to the complex nature of bentonite swelling behavior. The proposed approach provides a valuable tool for predicting the maximum swelling pressure of bentonite-based materials under various conditions, supporting the design and analysis of effective barrier systems in geotechnical engineering applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3