Distribution model transferability for a wide-ranging species, the Gray Wolf

Author:

Gantchoff M. G.,Beyer D. E.,Erb J. D.,MacFarland D. M.,Norton D. C.,Roell B. J.,Price Tack J. L.,Belant J. L.

Abstract

AbstractUsing existing data can be a reliable and cost-effective way to predict species distributions, and particularly useful for recovering or expanding species. We developed a current gray wolf (Canis lupus) distribution model for the western Great Lakes region, USA, and evaluated the spatial transferability of single-state models to the region. This study is the first assessment of transferability in a wide-ranging carnivore, as well as one of few developed for large spatial extents. We collected 3500 wolf locations from winter surveys in Minnesota (2017–2019), Wisconsin (2019–2020), and Michigan (2017–2020). We included 10 variables: proportion of natural cover, pastures, and crops; distance to natural cover, agriculture, developed land, and water; major and minor road density; and snowfall (1-km res.). We created a regional ensemble distribution by weight-averaging eight models based on their performance. We also developed single-state models, and estimated spatial transferability using two approaches: state cross-validation and extrapolation. We assessed performance by quantifying correlations, receiver operating characteristic curves (ROC), sensitivities, and two niche similarity indices. The regional area estimated to be most suitable for wolves during winter (threshold = maximum sensitivity/specificity) was 106,465 km2 (MN = 48,083 km2, WI = 27,757 km2, MI = 30,625 km2) and correctly predicted 88% of wolf locations analyzed. Increasing natural cover and distance to crops were consistently important for determining regional and single-state wolf distribution. Extrapolation (vs. cross-validation) produced results with the greatest performance metrics, and were most similar to the regional model, yet good internal performance was unrelated to greater extrapolation performance. Factors influencing species distributions are scale-dependent and can vary across areas due to behavioral plasticity. When extending inferences beyond the current occurrence of individuals, assessing variation in ecology such as habitat selection, as well as methodological factors including model performance, will be critical to avoid poor scientific interpretations and develop effective conservation applications. In particular, accurate distribution models for recovering or recovered carnivores can be used to develop plans for habitat management, quantify potential of unoccupied habitat, assess connectivity modeling, and mitigate conflict, facilitating long-term species persistence.

Funder

State University of New York College of Environmental Science and Forestry

Camp Fire Conservation Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3