Author:
Glemain Benjamin,de Lamballerie Xavier,Zins Marie,Severi Gianluca,Touvier Mathilde,Deleuze Jean-François, ,Carrat Fabrice,Ancel Pierre-Yves,Charles Marie-Aline,Severi Gianluca,Touvier Mathilde,Zins Marie,Kab Sofiane,Renuy Adeline,Le-Got Stephane,Ribet Celine,Pellicer Mireille,Wiernik Emmanuel,Goldberg Marcel,Artaud Fanny,Gerbouin-Rérolle Pascale,Enguix Mélody,Laplanche Camille,Gomes-Rima Roselyn,Hoang Lyan,Correia Emmanuelle,Barry Alpha Amadou,Senina Nadège,Allegre Julien,Szabo de Edelenyi Fabien,Druesne-Pecollo Nathalie,Esseddik Younes,Hercberg Serge,Deschasaux Mélanie,Charles Marie-Aline,Benhammou Valérie,Ritmi Anass,Marchand Laetitia,Zaros Cecile,Lordmi Elodie,Candea Adriana,de Visme Sophie,Simeon Thierry,Thierry Xavier,Geay Bertrand,Dufourg Marie-Noelle,Milcent Karen,Rahib Delphine,Lydie Nathalie,Lusivika-Nzinga Clovis,Pannetier Gregory,Lapidus Nathanael,Goderel Isabelle,Dorival Céline,Nicol Jérôme,Robineau Olivier,Lai Cindy,Belhadji Liza,Esperou Hélène,Couffin-Cadiergues Sandrine,Gagliolo Jean-Marie,Blanché Hélène,Sébaoun Jean-Marc,Beaudoin Jean-Christophe,Gressin Laetitia,Morel Valérie,Ouili Ouissam,Deleuze Jean-François,Ninove Laetitia,Priet Stéphane,Villarroel Paola Mariela Saba,Fourié Toscane,Ali Souand Mohamed,Amroun Abdenour,Seston Morgan,Ayhan Nazli,Pastorino Boris,de Lamballerie Xavier,Lapidus Nathanaël,Carrat Fabrice
Abstract
AbstractThe individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a “negative” or a “positive” test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. “Indeterminate” tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.
Funder
Agence Nationale de la Recherche
Fondation pour la Recherche Médicale
Institut National de la Santé et de la Recherche Médicale
Publisher
Springer Science and Business Media LLC