Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model

Author:

Glemain Benjamin,de Lamballerie Xavier,Zins Marie,Severi Gianluca,Touvier Mathilde,Deleuze Jean-François, ,Carrat Fabrice,Ancel Pierre-Yves,Charles Marie-Aline,Severi Gianluca,Touvier Mathilde,Zins Marie,Kab Sofiane,Renuy Adeline,Le-Got Stephane,Ribet Celine,Pellicer Mireille,Wiernik Emmanuel,Goldberg Marcel,Artaud Fanny,Gerbouin-Rérolle Pascale,Enguix Mélody,Laplanche Camille,Gomes-Rima Roselyn,Hoang Lyan,Correia Emmanuelle,Barry Alpha Amadou,Senina Nadège,Allegre Julien,Szabo de Edelenyi Fabien,Druesne-Pecollo Nathalie,Esseddik Younes,Hercberg Serge,Deschasaux Mélanie,Charles Marie-Aline,Benhammou Valérie,Ritmi Anass,Marchand Laetitia,Zaros Cecile,Lordmi Elodie,Candea Adriana,de Visme Sophie,Simeon Thierry,Thierry Xavier,Geay Bertrand,Dufourg Marie-Noelle,Milcent Karen,Rahib Delphine,Lydie Nathalie,Lusivika-Nzinga Clovis,Pannetier Gregory,Lapidus Nathanael,Goderel Isabelle,Dorival Céline,Nicol Jérôme,Robineau Olivier,Lai Cindy,Belhadji Liza,Esperou Hélène,Couffin-Cadiergues Sandrine,Gagliolo Jean-Marie,Blanché Hélène,Sébaoun Jean-Marc,Beaudoin Jean-Christophe,Gressin Laetitia,Morel Valérie,Ouili Ouissam,Deleuze Jean-François,Ninove Laetitia,Priet Stéphane,Villarroel Paola Mariela Saba,Fourié Toscane,Ali Souand Mohamed,Amroun Abdenour,Seston Morgan,Ayhan Nazli,Pastorino Boris,de Lamballerie Xavier,Lapidus Nathanaël,Carrat Fabrice

Abstract

AbstractThe individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a “negative” or a “positive” test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. “Indeterminate” tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.

Funder

Agence Nationale de la Recherche

Fondation pour la Recherche Médicale

Institut National de la Santé et de la Recherche Médicale

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3