Author:
Ferreira-Martins André J.,Castaldoni Rodrigo,Alencar Brenno M.,Ferreira Marcos V.,Nogueira Tatiane,Rios Ricardo A.,Lopes Tiago J. S.
Abstract
AbstractBlood coagulation is a vital process for humans and other species. Following an injury to a blood vessel, a cascade of molecular signals is transmitted, inhibiting and activating more than a dozen coagulation factors and resulting in the formation of a fibrin clot that ceases the bleeding. In this process, the Coagulation factor V (FV) is a master regulator, coordinating critical steps of this process. Mutations to this factor result in spontaneous bleeding episodes and prolonged hemorrhage after trauma or surgery. Although the role of FV is well characterized, it is unclear how single-point mutations affect its structure. In this study, to understand the effect of mutations, we created a detailed network map of this protein, where each node is a residue, and two residues are connected if they are in close proximity in the three-dimensional structure. Overall, we analyzed 63 point-mutations from patients and identified common patterns underlying FV deficient phenotypes. We used structural and evolutionary patterns as input to machine learning algorithms to anticipate the effects of mutations and anticipated FV-deficiency with fair accuracy. Together, our results demonstrate how clinical features, genetic data and in silico analysis are converging to enhance treatment and diagnosis of coagulation disorders.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献