Meticulous research for design of plasmonics sensors for cancer detection and food contaminants analysis via machine learning and artificial intelligence

Author:

Jafrasteh Fatemeh,Farmani Ali,Mohamadi Javad

Abstract

AbstractCancer is one of the leading causes of death worldwide, making early detection and accurate diagnosis critical for effective treatment and improved patient outcomes. In recent years, machine learning (ML) has emerged as a powerful tool for cancer detection, enabling the development of innovative algorithms that can analyze vast amounts of data and provide accurate predictions. This review paper aims to provide a comprehensive overview of the various ML algorithms and techniques employed for cancer detection, highlighting recent advancements, challenges, and future directions in this field. The main challenge is finding a safe, auditable and reliable analysis method for fundamental scientific publication. Food contaminant analysis is a process of testing food products to identify and quantify the presence of harmful substances or contaminants. These substances can include bacteria, viruses, toxins, pesticides, heavy metals, allergens, and other chemical residues. Machine learning (ML) and artificial intelligence (A.I) proposed as a promising method that possesses excellent potential to extract information with high validity that may be overlooked with conventional analysis techniques and for its capability in a wide range of investigations. A.I technology used in meta-optics can develop optical devices and systems to a higher level in future. Furthermore (M.L.) and (A.I.) play key roles as a health Approach for nano materials NMs safety assessment in environment and human health research. Beside, benefits of ML in design of plasmonic sensors for different applications with improved resolution and detection are convinced.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3