Genetic basis and network underlying synergistic roots and shoots biomass accumulation revealed by genome-wide association studies in rice

Author:

Zhao Yan,Yin Zhigang,Wang Xueqiang,Jiang Conghui,Aslam Muhammad Mahran,Gao Fenghua,Pan Yinghua,Xie Jianyin,Zhu Xiaoyang,Dong Luhao,Liu Yanhe,Zhang Hongliang,Li Jinjie,Li Zichao

Abstract

AbstractGenetic basis and network studies underlying synergistic biomass accumulation of roots and shoots (SBA) are conducive for rational design of high-biomass rice breeding. In this study, association signals for root weight, shoot weight, and the ratio of root-to-shoot mass (R/S) were identified using 666 rice accessions by genome-wide association study, together with their sub-traits, root length, root thickness and shoot length. Most association signals for root weight and shoot weight did not show association with their sub-traits. Based on the results, we proposed a top-to-bottom model for SBA, i.e. root weight, shoot weight and R/S were determined by their highest priority in contributing to biomass in the regulatory pathway, followed by a lower priority pathway for their sub-traits. Owing to 37 enriched clusters with more than two association signals identified, the relationship among the six traits could be also involved in linkage and pleiotropy. Furthermore, a discrimination of pleiotropy and LD at sequencing level using the known gene OsPTR9 for root weight, R/S and root length was provided. The results of given moderate correlation between traits and their corresponding sub-traits, and moderate additive effects between a trait and the accumulation of excellent alleles corresponding to its sub-traits supported a bottom-to-top regulation model for SBA. This model depicted each lowest-order trait (root length, root thickness and shoot length) was determined by its own regulation loci, and competition among different traits, as well as the pleiotropy and LD. All above ensure the coordinated development of each trait and the accumulation of the total biomass, although the predominant genetic basis of SBA is still indistinguishable. The presentation of the above two models and evidence of this study shed light on dissecting the genetic architecture of SBA.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3