Application of machine learning in the diagnosis of vestibular disease

Author:

Anh Do Tram,Takakura Hiromasa,Asai Masatsugu,Ueda Naoko,Shojaku Hideo

Abstract

AbstractMachine learning is considered a potential aid to support human decision making in disease prediction. In this study, we determined the utility of various machine learning algorithms in classifying peripheral vestibular (PV) and non-PV diseases based on the results of equilibrium function tests. A total of 1009 patients who had undergone our standardized neuro-otological examinations were recruited. We applied five supervised machine learning algorithms (random forest, adaboost, gradient boosting, support vector machine, and logistic regression). After preprocessing the data, optimizing the hyperparameters using GridSearchCV, and performing a final evaluation on the test set using scikit-learn, we evaluated the predictive capability using various performance metrics, namely, accuracy, F1-score, area under the receiver operating characteristic curve, precision, recall, and Matthews correlation coefficient (MCC). All five machine learning algorithms yielded satisfactory results; the accuracy of the algorithms ranged from 76 to 79%, with the support vector machine classifier having the highest accuracy. In cases where the predictions of the five models were consistent, the accuracy of the PV diagnostic results was improved to 83%, whereas it increased to 85% for the non-PV diagnostic results. Future research should increase the number of patients and optimize the classification methods to obtain the highest diagnostic accuracy.

Funder

A grant from the Ministry of Health, Labor and Welfare of Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3