Predictive power of non-identifiable models

Author:

Grabowski Frederic,Nałęcz-Jawecki Paweł,Lipniacki Tomasz

Abstract

AbstractResolving practical non-identifiability of computational models typically requires either additional data or non-algorithmic model reduction, which frequently results in models containing parameters lacking direct interpretation. Here, instead of reducing models, we explore an alternative, Bayesian approach, and quantify the predictive power of non-identifiable models. We considered an example biochemical signalling cascade model as well as its mechanical analogue. For these models, we demonstrated that by measuring a single variable in response to a properly chosen stimulation protocol, the dimensionality of the parameter space is reduced, which allows for predicting the measured variable’s trajectory in response to different stimulation protocols even if all model parameters remain unidentified. Moreover, one can predict how such a trajectory will transform in the case of a multiplicative change of an arbitrary model parameter. Successive measurements of remaining variables further reduce the dimensionality of the parameter space and enable new predictions. We analysed potential pitfalls of the proposed approach that can arise when the investigated model is oversimplified, incorrect, or when the training protocol is inadequate. The main advantage of the suggested iterative approach is that the predictive power of the model can be assessed and practically utilised at each step.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3