Nearly-freestanding supramolecular assembly with tunable structural properties

Author:

Caruso Tommaso,De Luca Oreste,Melfi Nicola,Policicchio Alfonso,Pisarra Michele,Godbert Nicolas,Aiello Iolinda,Giorno Eugenia,Pacilè Daniela,Moras Paolo,Martín Fernando,Rudolf Petra,Agostino Raffaele Giuseppe,Papagno Marco

Abstract

AbstractThe synthesis and design of two-dimensional supramolecular assemblies with specific functionalities is one of the principal goals of the emerging field of molecule-based electronics, which is relevant for many technological applications. Although a large number of molecular assemblies have been already investigated, engineering uniform and highly ordered two-dimensional molecular assemblies is still a challenge. Here we report on a novel approach to prepare wide highly crystalline molecular assemblies with tunable structural properties. We make use of the high-reactivity of the carboxylic acid functional moiety and of the predictable structural features of non-polar alkane chains to synthesize 2D supramolecular assemblies of 4-(decyloxy)benzoic acid (4DBA;C$$_{17}$$ 17 H$$_{26}$$ 26 O$$_{3}$$ 3 ) on a Au(111) surface. By means of scanning tunneling microscopy, density functional theory calculations and photoemission spectroscopy, we demonstrate that these molecules form a self-limited highly ordered and defect-free two-dimensional single-layer film of micrometer-size, which exhibits a nearly-freestanding character. We prove that by changing the length of the alkoxy chain it is possible to modify in a controlled way the molecular density of the “floating” overlayer without affecting the molecular assembly. This system is especially suitable for engineering molecular assemblies because it represents one of the few 2D molecular arrays with specific functionality where the structural properties can be tuned in a controlled way, while preserving the molecular pattern.

Funder

Progetto Star 2

EUROFEL-ROADMAP ESFRI

Programme for Centers of Excellence in RD

Maria de Maeztu

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3