In-depth analysis on PTB7 based semi-transparent solar cell employing MoO3/Ag/WO3 contact for advanced optical performance and light utilization

Author:

Çokduygulular Erman,Çetinkaya Çağlar,Emik Serkan,Kınacı Barış

Abstract

AbstractNovel semi-transparent organic solar cells (ST-OSC) can be designed with high average visible transmittance (AVT) while at the same time exhibiting superior photovoltaic performance. This reach requires their design to be based not only on conventional window applications but also on functional industrial applications that require exceptional optical performance. In ST-OSC, high AVT can be achieved by photonic-based dielectric/metal/dielectric (DMD) transparent contact engineering. Functional optical modification can also be made with a fine-tuned design of DMD that includes a light management engineering-based approach. Thus, ST-OSCs can be suitable for aesthetic, colourful and decorative industrial windows that provide natural lighting. In this study, we determined optimal ST-OSCs based on a novel PTB7:PC71BM polymer blend with MoO3/Ag/WO3 asymmetric DMD top contact by examining extraordinary optical properties such as AVT, colour rendering index, correlated colour temperature and colour perception over 10 thousand designs. In addition to determining the optimality and extraordinary optical limits for PTB7, we also evaluated the photon-harvesting and photovoltaic performance of ST-OSCs from external quantum efficiency and quantum utilization efficiency. In optimal situations, ST-OSCs offering 48.75% AVT, 99.08 CRI, and sky-blue colours were designed and determined to generate short-circuit current densities of 9.88 mA·cm−2, 13.64 mA·cm−2, and 13.06 mA·cm−2, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art;Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology;2023-12-01

2. Investigation of the electrical, optical and photophysical properties of PTB7:PCBM-thin films;Journal of Materials Science: Materials in Electronics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3