Development and validation of a reliable DNA copy-number-based machine learning algorithm (CopyClust) for breast cancer integrative cluster classification

Author:

Young Cameron C.,Eason Katherine,Manzano Garcia Raquel,Moulange Richard,Mukherjee Sach,Chin Suet-Feung,Caldas Carlos,Rueda Oscar M.

Abstract

AbstractThe Integrative Cluster subtypes (IntClusts) provide a framework for the classification of breast cancer tumors into 10 distinct groups based on copy number and gene expression, each with unique biological drivers of disease and clinical prognoses. Gene expression data is often lacking, and accurate classification of samples into IntClusts with copy number data alone is essential. Current classification methods achieve low accuracy when gene expression data are absent, warranting the development of new approaches to IntClust classification. Copy number data from 1980 breast cancer samples from METABRIC was used to train multiclass XGBoost machine learning algorithms (CopyClust). A piecewise constant fit was applied to the average copy number profile of each IntClust and unique breakpoints across the 10 profiles were identified and converted into ~ 500 genomic regions used as features for CopyClust. These models consisted of two approaches: a 10-class model with the final IntClust label predicted by a single multiclass model and a 6-class model with binary reclassification in which four pairs of IntClusts were combined for initial multiclass classification. Performance was validated on the TCGA dataset, with copy number data generated from both SNP arrays and WES platforms. CopyClust achieved 81% and 79% overall accuracy with the TCGA SNP and WES datasets, respectively, a nine-percentage point or greater improvement in overall IntClust subtype classification accuracy. CopyClust achieves a significant improvement over current methods in classification accuracy of IntClust subtypes for samples without available gene expression data and is an easily implementable algorithm for IntClust classification of breast cancer samples with copy number data.

Funder

Cancer Research UK

Horizon 2020

NIHR Cambridge Biomedical Research Centre

Medical Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3