Enhanced brain tumor classification using graph convolutional neural network architecture

Author:

Ravinder M.,Saluja Garima,Allabun Sarah,Alqahtani Mohammed S.,Abbas Mohamed,Othman Manal,Soufiene Ben Othman

Abstract

AbstractThe Brain Tumor presents a highly critical situation concerning the brain, characterized by the uncontrolled growth of an abnormal cell cluster. Early brain tumor detection is essential for accurate diagnosis and effective treatment planning. In this paper, a novel Convolutional Neural Network (CNN) based Graph Neural Network (GNN) model is proposed using the publicly available Brain Tumor dataset from Kaggle to predict whether a person has brain tumor or not and if yes then which type (Meningioma, Pituitary or Glioma). The objective of this research and the proposed models is to provide a solution to the non-consideration of non-Euclidean distances in image data and the inability of conventional models to learn on pixel similarity based upon the pixel proximity. To solve this problem, we have proposed a Graph based Convolutional Neural Network (GCNN) model and it is found that the proposed model solves the problem of considering non-Euclidean distances in images. We aimed at improving brain tumor detection and classification using a novel technique which combines GNN and a 26 layered CNN that takes in a Graph input pre-convolved using Graph Convolution operation. The objective of Graph Convolution is to modify the node features (data linked to each node) by combining information from nearby nodes. A standard pre-computed Adjacency matrix is used, and the input graphs were updated as the averaged sum of local neighbor nodes, which carry the regional information about the tumor. These modified graphs are given as the input matrices to a standard 26 layered CNN with Batch Normalization and Dropout layers intact. Five different networks namely Net-0, Net-1, Net-2, Net-3 and Net-4 are proposed, and it is found that Net-2 outperformed the other networks namely Net-0, Net-1, Net-3 and Net-4. The highest accuracy achieved was 95.01% by Net-2. With its current effectiveness, the model we propose represents a critical alternative for the statistical detection of brain tumors in patients who are suspected of having one.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3