Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane

Author:

Li Hongxia,Raza Aikifa,Yuan Shaojun,AlMarzooqi Faisal,Fang Nicholas X.,Zhang TieJun

Abstract

AbstractMembrane-on-chip is of growing interest in a wide variety of high-throughput environmental and water research. Advances in membrane technology continuously provide novel materials and multi-functional structures. Yet, the incorporation of membrane into microfluidic devices remains challenging, thus limiting its versatile utilization. Herein, via micro-stereolithography 3D printing, we propose and fabricate a “fish gill” structure-integrated on-chip membrane device, which has the self-sealing attribute at structure-membrane interface without extra assembling. As a demonstration, metallic micromesh and polymeric membrane can also be easily embedded in 3D printed on-chip device to achieve anti-fouling and anti-clogging functionality for wastewater filtration. As evidenced from in-situ visualization of structure-fluid-foulant interactions during filtration process, the proposed approach successfully adopts the fish feeding mechanism, being able to “ricochet” foulant particles or droplets through hydrodynamic manipulation. When benchmarked with two common wastewater treatment scenarios, such as plastic micro-particles and emulsified oil droplets, our biomimetic filtration devices exhibit 2 ~ 3 times longer durability for high-flux filtration than devices with commercial membrane. This proposed 3D printing-on-membrane approach, elegantly bridging the fields of microfluidics and membrane science, is instrumental to many other applications in energy, sensing, analytical chemistry and biomedical engineering.

Funder

ASPIRE

Sandooq Al Watan Applied Research & Development Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3