Ambient air pollution and cardiovascular disease rate an ANN modeling: Yazd-Central of Iran

Author:

Jalili Mahrokh,Ehrampoush Mohammad Hassan,Mokhtari Mehdi,Ebrahimi Ali Asghar,Mazidi Faezeh,Abbasi Fariba,Karimi Hossein

Abstract

AbstractThis study was aimed to investigate the air pollutants impact on heart patient's hospital admission rates in Yazd for the first time. Modeling was done by time series, multivariate linear regression, and artificial neural network (ANN). During 5 years, the mean concentrations of PM10, SO2, O3, NO2, and CO were 98.48 μg m−3, 8.57 ppm, 19.66 ppm, 18.14 ppm, and 4.07 ppm, respectively. The total number of cardiovascular disease (CD) patients was 12,491, of which 57% and 43% were related to men and women, respectively. The maximum correlation of air pollutants was observed between CO and PM10 (R = 0.62). The presence of SO2 and NO2 can be dependent on meteorological parameters (R = 0.48). Despite there was a positive correlation between age and CD (p = 0.001), the highest correlation was detected between SO2 and CD (R = 0.4). The annual variation trend of SO2, NO2, and CO concentrations was more similar to the variations trend in meteorological parameters. Moreover, the temperature had also been an effective factor in the O3 variation rate at lag = 0. On the other hand, SO2 has been the most effective contaminant in CD patient admissions in hospitals (R = 0.45). In the monthly database classification, SO2 and NO2 were the most prominent factors in the CD (R = 0.5). The multivariate linear regression model also showed that CO and SO2 were significant contaminants in the number of hospital admissions (R = 0.46, p = 0.001) that both pollutants were a function of air temperature (p = 0.002). In the ANN nonlinear model, the 14, 12, 10, and 13 neurons in the hidden layer were formed the best structure for PM, NO2, O3, and SO2, respectively. Thus, the Rall rate for these structures was 0.78–0.83. In these structures, according to the autocorrelation of error in lag = 0, the series are stationary, which makes it possible to predict using this model. According to the results, the artificial neural network had a good ability to predict the relationship between the effect of air pollutants on the CD in a 5 years' time series.

Funder

Shahid Sadoughi University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3