Recombinant thrombomodulin alleviates oxidative stress without compromising host resistance to infection in rats infected with methicillin-resistant Staphylococcus aureus

Author:

Ito Takashi,Shrestha Binita,Kakihana Yasuyuki,Maruyama Ikuro

Abstract

AbstractRecombinant thrombomodulin (rTM) has been used for treatment of sepsis-associated disseminated intravascular coagulation. Recent studies have suggested that anticoagulant therapy might dampen the protective role of immunothrombosis. We examined if rTM might worsen infectious diseases. Male Sprague–Dawley rats with jugular-vein catheterization were divided into three groups: no anticoagulation; rTM pretreatment; rTM treatment at 6 h. Live methicillin-resistant Staphylococcus aureus (MRSA) was inoculated into the tail vein of rats. rTM was administered into the jugular-vein catheter before or 6 h after MRSA inoculation, while an equal volume of saline was administered in the no-anticoagulation group. Blood samples were collected from the jugular-vein catheter before, 6 h and 12 h after MRSA inoculation. Tissue samples were collected from anesthetized rats when moribund or 18 h after MRSA inoculation. The survival rate of rats in the no-anticoagulation group, rTM pretreatment group, and rTM treatment at 6-h group was 50%, 25%, and 75%, respectively. Bacterial burden in blood, lung, liver, and spleen was neither increased nor decreased in rats treated with rTM. The ratio of bacteria found in the extravascular space to those in the intravascular space was increased in rats treated with rTM although the statistical power for this was low because of the small sample size. Metabolomics analysis revealed that rTM treatment alleviated oxidative stress, as evidenced by the decrease in levels of oxidized glutathione with reference to reduced glutathione. rTM did not promote bacterial propagation but alleviated oxidative stress in our rat model of bloodstream infection with MRSA. Further large-scale studies are needed to confirm these findings.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3