Author:
Li Zhuang,Dong Dandan,Zhang Lei,Zhang Shuang,Wang Qing,Dong Chuang
Abstract
AbstractSolid solutions are the basis for most industrial alloys. However, the relationships between their characteristic short-range orders and chemical compositions have not been established. The present work combines Cowley parameter α with our cluster-plus-glue-atom model to accurately derive the chemical units of binary solid-solution alloys of face-centered cubic type. The chemical unit carries information on atomic structure and chemical composition, which explains prevailing industrial alloys. For example, chemical units in Cu68.9Zn31.1 alloy with α1 = − 0.137 are formulated as [Zn-Cu10Zn2]Zn2Cu2 and [Zn-Cu10Zn2]Zn3Cu1, with 64.0–70.0 wt% Cu corresponding to the most widely used cartridge brass C26000 (68.5–71.5 Cu). This work answers the long-standing question on the composition origin of solid-solution-based industrial alloys, by tracing to the molecule-like chemical units implied in chemical short-range ordering in solid solutions.
Funder
National Natural Science Foundation of China
Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation
Subject Development Foundation of Key Laboratory of Surface Physics and Chemistry
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献