Knockdown of lncRNA MALAT1 attenuates renal interstitial fibrosis through miR-124-3p/ITGB1 axis

Author:

Xia Weiping,Chen Xiang,Zhu Zewu,Chen Hequn,Li Bingsheng,Wang Kangning,Huang Li,Liu Zhi,Chen Zhi

Abstract

AbstractRenal interstitial fibrosis (RIF) considered the primary irreversible cause of chronic kidney disease. Recently, accumulating studies demonstrated that lncRNAs play an important role in the pathogenesis of RIF. However, the underlying exact mechanism of lncRNA MALAT1 in RIF remains barely known. Here, the aim of our study was to investigate the dysregulate expression of lncRNA MALAT1 in TGF-β1 treated HK2/NRK-49F cells and unilateral ureteral obstruction (UUO) mice model, defining its effects on HK2/NRK-49F cells and UUO mice fibrosis process through the miR-124-3p/ITGB1 signaling axis. It was found that lncRNA MALAT1 and ITGB1 was significantly overexpression, while miR-124-3p was downregulated in HK2/NRK-49F cells induced by TGF-β1 and in UUO mice model. Moreover, knockdown of lncRNA MALAT1 remarkably downregulated the proteins level of fibrosis-related markers, ITGB1, and upregulated the expression of epithelial marker E-cadherin. Consistently, mechanistic studies showed that miR-124-3p can directly binds to lncRNA MALAT1 and ITGB1. And the protect effect of Len-sh-MALAT1 on fibrosis related protein levels could be partially reversed by co-transfected with inhibitor-miR-124-3p. Moreover, the expression trend of LncRNA MALAT1/miR-124-3p/ITGB1 in renal tissues of patients with obstructive nephropathy (ON) was consistent with the results of cell and animal experiments. Taken together, these results indicated that lncRNA MALAT1 could promote RIF process in vitro and in vivo via the miR-124-3p/ITGB1 signaling pathway. These findings suggest a new regulatory pathway involving lncRNA MALAT1, which probably serves as a potential therapeutic target for RIF.

Funder

the Natural Science Foundation of Hunan province Youth Fund

the National Natural Science Foundation of Hunan province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3